Why the human brain matures slower than its primate relatives
The human brain is a fascinating and complex organ that supports numerous sophisticated behaviors and abilities that are observed in no other animal species. For centuries, scientists have been trying to understand what is so unique about the human brain and how it develops over the human lifespan.
Recent technological and experimental advances have opened new avenues for neuroscience research, which in turn has led to the creation of increasingly detailed descriptions of the brain and its underlying processes. Collectively, these efforts are helping to shed new light on the underpinnings of various neuropsychiatric and neurodevelopmental disorders.
Researchers at Beijing Normal University, the Changping Laboratory and other institutes have recently set out to study both the human and macaque brain, comparing their development over time using various genetic and molecular analysis tools. Their paper, published in Nature Neuroscience, highlights some key differences between the two species, with the human pre-frontal cortex (PFC) developing slower than the macaque PFC.
“Unraveling the cellular and molecular characteristics of human prefrontal cortex (PFC) development is crucial for understanding human cognitive abilities and vulnerability to neurological and neuropsychiatric disorders,” wrote Jiyao Zhang, Mayuqing Li, and their colleagues in their paper. “We created a comparative repository for gene expression, chromatin accessibility and spatial transcriptomics of human and macaque postnatal PFC development at single-cell resolution.”
Mapping brain development at a single-cell level
The researchers collected several samples of brain tissue that was surgically removed from the PFC of macaques and humans at different stages after birth. The human subjects were children with epilepsy who were undergoing surgical procedures as part of their treatment plan.
The researchers analyzed the expression of genes in single cells taken from the tissues they collected, as well as chromatin accessibility (i.e., how open DNA is within individual cells). They also mapped the expression of genes across the entire brain tissues, using a technique known as spatial transcriptomics, and looked at the types of cells that were present.
“Integrative analyses outlined species-specific dynamic trajectories of different cell types, highlighting key windows and gene regulatory networks for processes such as synaptogenesis, synaptic pruning and gliogenesis,” wrote the authors.
The researchers’ analyses revealed that the human PFC takes longer to develop than that of macaques. They also observed that glial progenitors (i.e., stem-like cells that later divide and develop into specific types of glial cells) proliferate more in humans.
“We identified regulatory correlates of the prolonged development of human PFC relative to macaques,” wrote the researchers. “Glial progenitors showed higher proliferation capability in humans compared to macaques, associated with distinct gene expression profiles. Furthermore, we uncovered cell types and lineages most susceptible to neurodevelopmental and neuropsychiatric disorders, focusing on transcription factors with human-specific expression features.”
Insight that could deepen our understanding of the brain
Zhang, Li and their colleagues gathered new valuable observations that could explain in greater detail known differences between the brain functions of humans and other primates. Notably, the researchers also identified transcription factors that modulate the development of the human brain but not of macaques, while also pinpointing types of cells in human tissues that are known to be affected in the brains of patients with specific disorders.
“Our discoveries shed light on human-specific regulatory programs extending postnatal cortical maturation through coordinated neuronal and glial development, with implications for cognition and neurodevelopmental disorders,” wrote the team.
In the future, the results of this recent study could help to better understand how the human brain develops and the molecular processes that are disrupted in the brains of individuals with specific neurodevelopmental or neuropsychiatric disorders. This could in turn pave the way for the introduction of new strategies to prevent or treat these disorders.









